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The shape of a vertical slender jet of fluid falling steadily under the force of gravity 
is studied. The problem is formulated as a nonlinear free boundary-value problem for 
the potential. Surface-tension effects are included and studied. The use of perturbation 
expansions results in a system of equations that can be solved by an efficient 
numerical procedure. Computations were made for jets issuing from three different 
orifice shapes, which were an ellipse, a square, and an equilateral triangle. Compu- 
tational results are presented illustrating the effects of different values for the surface- 
tension coefficient on the shape of the jet and the periodic nature of the cross-sectional 
shapes. 

1. Introduction 
We wish to study the steady three-dimensional potential flow of a slender jet of 

fluid falling vertically in the presence of gravity. Our primary interest is to determine 
the shape of the free surface of the jet, given the cross-sectional shape and velocity 
profile of the jet at  a particular height (e.g. at an orifice from which the jet emanates). 
We also wish to include surface-tension effects and evaluate their influence on the 
shape and spatial stability of the jet. Viscous effects are neglected. 

This paper is an extension of our previous work on this problem (see Geer & 
Strikwerda 1980; Strikwerda & Geer 1981) to include the effects of surface tension. 
The mathematical formulation of the problem leads to a three-dimensional nonlinear 
boundary-value problem for Laplace’s equation, for which the boundary of the flow 
is also unknown. However, for the case of a slender jet with surface-tension effects 
neglected, Tuck (1976) and Geer (1977a, b )  derived equations to describe the first 
approximation to the cross-sectional shape and velocities of the jet. We shall show 
how this can be done with the effects of surface tension included. The problem of 
determining the shape is thus reduced to solving a nonlinear two-dimensional 
problem in the cross-sectional plane of the jet. Both Tuck and Geer gave an exact 
solution to this problem with surface-tension effects neglected, namely a jet with an 
elliptical cross-sectional shape. (See also Green (1977).) To date no other exact 
solutions have been found. 

The purpose of this work is to present the results of solving numerically the 
associated nonlinear free boundary-value problem for jets issuing from orifices of 
several different shapes with surface-tension effects included. The problem is 
formulated in $2 and then transformed into a form more suitable for numerical 
integration. In $3,  a numerical method, which we have used to integrate the problem 
outlined in $2, is briefly described. This method is an extension of a method we have 
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described elsewhere (Strikwerda & Geer 1981), and it may be useful in solving other 
nonlinear free boundary-value problems. 

In  $4 we present the results of our calculations using two different values of the 
Weber number for the flow for each of three different orifice shapes. These shapes 
include an ellipse, a square, and an equilateral triangle. We discuss these results in 
35, with special emphasis on the effects of surface tension on the cross-section shape 
and waves on the surface of the jet. 

2. Formulation of the problem 
Let, the velocity potential of the jet be denoted by @ = @(r,  8, z ;  E )  and let the shape 

of the free surface of the jet be described by r = Y(0, z ;  E )  (see figure 1). Here r ,  8 and 
z form the usual (non-dimensional) cylindrical coordinate system, with the positive 
z-axis pointing vertically downward in the direction of gravity. The parameter E ,  the 
slenderness ratio of the jet, is the ratio of a typical radius of the jet to a typical length 
along the jet, and is defined precisely by Geer (1977~) .  The boundary conditions a t  
the free surface are the kinematic conditions of no flow through the surface and the 
jump in pressure due to surface tension. For small values of e ,  we can show, using 
the ideas of Geer (1977a), that @ and 9 are given by 

(2.1) 

(2.2) 

@ = $(i + z)g+E2#(r, 8, z )  + 0(c4), 
Y = S(8,z)  + 0 ( € 2 ) ,  

where $ and X satisfy the conditions 

with 

ss,, - s 2  - 2s; 
(S2 + Sg)! ’ 

w-1 (g)2+s-2(g)2+2(1 ++- aZ = 

holding on r = S ( 8 , z ) .  Equation (2.3) follows from Laplace’s equation for the 
potential, while (2.4) and (2.5) result from the substitution of the perturbation 
expansions (2.1) and (2.2) in the boundary conditions. I n  (2.5), W is defined by 
W = 2g2b3p/yU2, where g is the acceleration due to gravity, b2 is the cross-sectional 
area of the jet a t  z = 0, p is the mass density of the fluid, y is the surface-tension 
coefficient, and U is the velocity of the jet at z = 0. The Weber number for the jet 
is c4 W .  (See the appendix for a derivation of (2.5) and a discussion of the Weber 
number for this flow.) Thus we see that # must satisfy the two-dimensional Poisson 
equation (2.3) in the cross-section of the jet, while (2.4) essentially prescribes the 
normal derivative of # at the boundary of the cross-section. Equation (2.5) is the 
additional condition which is needed to determine the free surface. 

To find $ and S, we transform the problem (2.3)-(2.5) into a form that is somewhat 
easier to deal with numerically. We first note that we can easily find a particular 
solution to (2.3) and consequently we write $ in the form 

# = --+(1+z)-:r2++, (2.6) 
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FIWRE 1. Sketch of a vertical slender jet, with an indication of the coordinate system. The locus 
of centroids of the cross-sections of the jet form a straight line (in the direction of gravity), which 
we choose to be the z-axis. Then r ,  0 and z form the usual cylindrical coordinate system, where 8 
is measured from any convenient plane through the z-axis. The free surface of the jet is denoted 
by r = Y ( 8 ,  z ;  E ) .  

where @ satisfies the homogeneous version of (2.3), i.e. Laplace's equation. Both @ 
and S are presumed known at z = 0. We then introduce a new independent radial 
variable p,  related to r by r 

p=-  (2.7) S(8,z) . 
Thus r is stretched in a non-uniform manner, but the unknown boundary r = S(8, z )  
is mapped onto the known boundary p = 1 .  We also define the new dependent 
variable R(8, z )  by 

In terms of the independent variables p,  8, and z ,  and the dependent variables 
@(p,  8, z )  and R(8, z ) ,  (2.4) and (2.5) can be written as 

R(8, z )  = +S(/3, z ) ~  (1 + 2);. (2.8) 

where 
li3S 1 l a R  
Xi38 2 R a 8 '  

p = _- = - - - 

These equations hold for p = 1 , 0  < 8 < 2.n and z > 0. The differential equation (2.3) 
then becomes 



158 

As a consequence of (2.3)-(2.4), we find the integrability condition 
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jr R(8, z )  d6 = constant, (2.12) 

which expresses the constant mass flux in the jet. 

Once -q? and R have been found, q5 and S can be recovered using (2 .6)  and (2.8). 
Thus, we seek solutions to (2.9)-(2.11) for 4 and R in the region 0 ,< p ,< 1 ,  z > 0. 

3. Method of solution 
In  this section we will briefly describe the method we have devised to solve the 

problem formulated in $2. This method is an extension of the method we have used 
to solve the problem when surface-tension effects are neglected, which we have 
discussed in detail elsewhere (see Strikwerda & Geer 1980). 

I n  order to obtain a numerical approximation to the solution of our problem 
formulated in this manner, we use a finite-difference scheme defined on the grid points 
as follows: 

z, = nAz (n  = 0 , 1 , 2 , 3 ,  ...), I 
where A6 = 2 n / ( N -  l ) ,  Ap = l / (M-  l ) ,  and Az is chosen to satisfy appropriate 
stability and accuracy criteria. Note that 6, = 0, 6N = 2 ~ ,  zo = 0, p1 = 1 and p M  = 0. 
We then use the MacCormack (1969) scheme with a special time-splitting to solve 
(2.9) and (2.10). I n  particular, if we define the vector w(6, z )  by w = (R,  @)T, then 
(2.9) and (2.10) can be written as 

aw 

where F contains all the terms from the right-hand sides of (2.9) and (2.10), except 
those from (2.10) that  are multiplied by W-l, and G contains the terms from (2.10) 
multiplied by W-l. Using the usual forward- and backward-difference operators D+ 
and D- respectively, and the centred second-difference operator D2, the forward- 
backward MacCormack scheme is given by the following formulas : 

(3.3) 

(corrector) 

w?+? = 8 w? + W?+l+ A ~ F ( ~ , + , ,  @‘?+I, D- @‘p+l D $,+I 

w?+l = w?+; + $AZG(Z,+,, R?+;, D R ~ + $  D~R?+;). 
’ ) I>}  (3.4) 

I n  order to maintain symmetry, the forward-backward MacCormack scheme is 
alternated with the backward-forward scheme, which uses backward differences in 
the predictor step and forward differences in the corrector step. Also, i t  was found 
that the conservation law (2.12) was satisfied more closely when the quantity /3 in 
(2.9) and (2.10) was approximated as 

D ,  R?I(&+Ri,A 
and this form was used in all the calculations given here. 
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The expression DR used in (3.3) and (3.4) in the G-operator is used to  denote the 
difference approximation to  aRla8 which appears in G only in the quantity p. The 
approximation for p is given by 

p; = (liaR)' l{( D+ Ri )'+ ( D- Ri )g 
2 R 30 , 2 R,+ R,+l R,+ RtP1 (3.5) 

The term D, @? in (3.3) and (3.4) is an approximation to a@/ap on p = 1 at 8 = 8, 
and z = z,. It is computed by first solving for an approximation to  the solution @ 
of (2.1 l ) ,  with @? specified on the boundary. The approximation is given by equations 
(3.6) and (3.7) of Geer & Strikwerda (1980), which are solved by successive 
over-relaxation. The term D, @? is then approximated by a second-order one-sided 
approximation to a@/+ given by equation (3.8) of Geer & Strikwerda (1980). 

Equations (3.1)-(3.5) above and equations (3.6)-(3.8) of Geer & Strikwerda (1980) 
describe our numerical scheme to solve the problem of $2. The scheme can be shown 
to be second-order accurate in both 8 and z (nee Strikwerda & Geer 1980). 

The splitting of the right-hand sides of (2.9) and (3.10) into the F- and G-operators 
and the method used in (3.3) and (3.4) allows the use of much larger values of Az 
in the calculations. Note that the second operation in each step determines the 
boundary values of the potential using the most recent values of R. Thus i t  is similar 
to an implicit method, but is, in fact, explicit. In  the calculations using the above 
splitting, the choice of Az was limited only by the accuracy required to resolve the 
oscillations of the jet. Without this splitting, the choice of Az was limited by a stability 
condition, which was much more severe than the accuracy limitation using the 
splitting. 

4. Examples 
Several examples of thin streams falling vertically through an orifice of a specified 

shape were calculated using the scheme outlined in $ 3. For each example the initial 
conditions were @ G 0 and R(B,z), i.e. ~ S ( 8 , z )  specified a t  z = 0. Note that the 
condition @ = 0 a t  z = 0 corresponds to  a jet that  is emanating with a cross-sectional 
velocity profile determined by the potential -4(1 +z)-ir2.  Thus, in the notation of 
$3, we set = 0 and Rf = R0(8,) at z = 0, where R0(8) was specified by one of the 
following (see figures 2 4 )  : 

( 1 )  an ellipse Ro = n-l(0.25 cos2 8+ sin2 8)-l, where the semi-axes of the ellipse are 
2(2/n)i and (2(n)i; 

(2) an equilateral triangle Ro = (2/31) min,,,, sec2 (O-inZ) where the length of 
the side of the triangle is $; 

(3) a square Ro = + min (secz 8, cosec2 O), where the length of the side of the square 
is 2. 
Each example has initial cross-sectional area of 4 and hence by (2.12) the areas are 
also equal for each value of z > 0. 

For each example, the origin was located a t  the centre of mass of the shape, as 
required in the derivation of the basic equations (2.3)-(2.5) (see Geer 1977a). Each 
example was run for two valuesof W ,  namely 1 and 0.5. Figures 2 4  show cross-sections 
of the jet a t  several values of z between 0 and 2. For comparison, these figures may 
be compared with the corresponding figures when surface-tension effects are neglected, 
i.e. when W is infinite, in Geer & Strikwerda (1980). 

Each of our examples was integrated much further in the z-direction than 
indicated in figures 2 4 .  I n  each case the cross-sectional shapes exhibited a periodic 
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FIGURE 2. Cross-sectional shapes at several values of z of a jet with an initial shape in the form 
of an ellipse, a triangle or a square. The shapes are shown at z = 0, (0.5), 2 with W = 1.0. 

behaviour in z ,  except for the gradual decrease in area due to gravitational 
acceleration. To exhibit this behaviour, we have plotted in figures 5 and 6 the values 
of S(B,z), for two fixed values of 0, as a function of z. In  these figures the definite 
wave structure of the jet can be seen. Representative cross-sectional shapes for each 
of our examples for larger values of z are shown in figures 7 and 8. 
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FIQURE 3. Cross-sectional shapes at  several values of z of a jet with an initial shape in the form 
of an ellipse, a triangle or a square. The shapes are shown at  z = 0, (0.25), 1 and with W = 0.5, 
which corresponds to a larger surface-tension coefficient. 

5. Analysis of the waves 
We now consider in more detail the wave behaviour of the slender jets we have 

calculated. Rayleigh (1879) has discussed waves on slender jets with surface tension 
(and gravity neglected) and has argued that the temporal frequency of the waves 
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FIQURE 4. Continuation of figure 3 for z = 1.25, (0.25). 2.0. 

should be proportional to the inverse square root of the Weber number W .  He has 
also argued that if the dominant term in the Fourier expansion of the cross-sectional 
shape is 

s - Xo+S,cosn(B-Bo) 

then the temporal frequency must be proportional to 

A similar argument shows that the spatial wavelength h of the waves will be inversely 
proportional to the quantity in (5.1). 

In  order to investigate this relationship for the jet shapes computed here, we fit 
the curves of figures 5 and 6 to curves of the form 
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FIGURE 5. Plots of the values of s(8, z )  for 0 < z < 20 for each of the three jet shapes and for two 
specific values of 8. For the ellipse, S was plotted for 8 = 0 and in ;  for the triangle, 8 = 0 and in ;  
and for the square, 0 = 0 and an. The value of W is 1.0. The lower pair of curves are for the ellipse, 
the middle pair are for the triangle, and the upper pair are for the square. For display purposes, 
the middle curves have been offset by 1.0 and the upper curves by 2.0. 
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FIGURE 6. Same type of plot as in figure 5 ,  except that W is now 0.5, corresponding to an 
increased surface-tension coefficient. 
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FIGITRE 7 .  Cross-sectional shapes of the three jets a t  larger values of z. The shapes are shown 

for z = 10, ( i ) ,  14 and with W = 1.0. 

where each ai i s  a constant. The fitting was done by the least-squares method, using 
the routine NL2SOL written by Gay and described by Dennis, Gay & Welsch (1981). 
The approximate wavelength of the waves in figures 5 and 6 is then given by 

h = 27t/a,. 
The least-squares fit was done using all of the data displayed in figures 5 and 6, 

and also with only the data between z = 10 and z = 20. The use of only the second 
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FIQURE 8. Same type of cross-sectional shapes as in figure 7 ,  but with W = 0.5, representing an 

increase in the surface-tension coefficient. 

half of the data was done to help eliminate the effects of any initial (spatial) transient 
disturbances, as well as to help determine whether or not the wavelength increased 
or decreased as a function of z. The results of the least-squares fit are displayed in 
table 1 .  

Two conclusions can be drawn from table 1 .  First, for each shape, the wavelength 
is essentially the same for each of the two curves (corresponding to different values 
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w =  1.0 W = 0.5 

Shape All data Half data All data Half data 

0" 6.48 6.90 4.55 4.84 
90" 6.48 6.91 4.55 4.86 

0" 3.40 3.54 2.34 2.43 
60" 3.39 3.54 2.34 2.43 

0" 1.89 1.99 1.33 1.41 
45" 1.89 1.99 1.32 1.41 

TABLE 1. Estimates of the wavelengths for the curves in figures 5 and 6. The estimates are based 
on a least-squares fit using all of the data for 0 ,< z ,< 20 and also using only the data for 10 < z < 20. 
For each shape, the wavelengths were computed for each of the two curves corresponding to the 
two values of 0 considered. 

Ellipse 

Triangle 

Square 

FIGURE 9. Comparison of the curve in figure 6 (multiplied by (1 + z ) i )  corresponding to the initially 
elliptical shape for 0 = 0 and W = 0.5 with the fitted curves: (a)  form (5.2); and (b )  form (5.4). The 
upper pair is the data compared with the form (5.2), and the lower pair is the data compared with 
the form (5.4). 

of 8 )  shown in figures 5 and 6. Secondly, the wavelength is apparently increasing with 
z. This second conclusion is based upon the observation that the values obtained from 
using the latter half of the data are consistently larger than the values obtained by 
using all the data. (This also follows from an inspection of the curves of figures 5 and 
6 when superimposed on the results of the least-squares fit, as in figure 9, which will 
be discussed below.) 

To investigate Rayleigh's conclusions further, we also computed the quantity 

A, = AW-+n3-n); (5.3) 
for each of the shapes we considered, with n equal to 2 , 3  or 4 for the ellipse, triangle 
and square respectively. The values of A, are displayed in table 2,  both for the fit 
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w = 1.0 W = 0.5 

Shape All data Half data All data Half data 

Ellipse 2.53 2.70 2.51 2.67 
Triangle 2.65 2.76 2.58 2.68 
Square 2.33 2.45 2.31 2.46 

TABLE 2. Values of A, calculated from (5.3) for the curves of figures 5 and 6 

using all of the data and also for the fit using only half of the data. (Since the two 
values of A, corresponding to the different values of 0, are quite close for each of the 
shapes, the average was used to compute A, in table 2.) 

The results given in table 2 are certainly consistent with the idea that the 
wavelength is proportional to W-i. In addition, the dependence of the wavelength 
on n is in quite good agreement with Rayleigh's analysis, considering the crudeness 
of our assignment of n as 3 for the triangle and 4 for the square. 

Using the results above as a guide, we now show that the shape of the curves in 
figures 5 and 6 can be better approximated by curves of the form 

(5.4) ( 1  + z)-a {b, + b, sin (b ,  W-i( 1 + z ) i  + b3)} 

than by curves of the form (5.2). We note that the form (5.4) corresponds to a shape 
with a slowly increasing wavelength proportional to (1 + z ) i .  

A plausibility argument for the form (5.4) is as follows. If we replace S(O,z) in (2.4) 
and (2.5) by (1  + z)-i &O, z ) ,  these equations become 

If we now assume that, for large z ,  f l  behaves like f i b (  1 + z)B + a(@, O ) ,  where p > 0, 
then from (5.5) we see that a t  least one of the terms (1 +z)-ba#/ar or a$/aO must 
behave like ,u( 1 + 2 ) B - l  fz( ,u( 1 + z)P+ a(@, 0 ) ,  as z becomes large. Using this result in 
(5.6), we find that p 2 ( 1  + Z ) ~ ( B - ~ )  must be proportional to W l ( 1  +z)-i. Thus ,u is 
proportional to W-4 and 2(@- 1 )  = -1, or p = i. 

Table 3 displays the values of b, obtained for each of our jets using all or half of 
the data. The better agreement among the values of b, in each row than among the 
values of A in table 1 supports the conjecture that the form (5.4) is more appropriate 
than the form (5.2) and hence that the wavelength is proportional to Wi( 1 + z ) i .  Also, 
the least-squares fits using (5.4) were noticeably better than those using (5 .2)  when 
superimposed on the original curves (see figure 9). 

Stimulated by our conjecture (5.4), Keller ( 1 9 8 3 )  has shown that small perturbations 
of a circular jet do indeed have wavelengths asymptotically proportional to 

In addition to the effects we have discussed here, there was also a small decrease 
in the amplitudes of the curves beyond the factor of (1  + z)-i. This decrease was 
smallest for the ellipse and greatest for the square. It is difficult to determine whether 
this decrease in amplitude is due to numerical dissipation or is actually part of the 
exact solution. 

w-4( 1 + z)? 
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w = 1.0 W = 0.5 

Shape All data Half data All data Half data 

Ellipse 
O0 1.465 1.464 1.478 1.483 

9oo 1.469 1.462 1.478 1.478 

O0 2.804 2.862 2.863 2.948 
60' 2.801 2.860 2.862 2.949 

O0 4.977 5.081 4.989 5.065 
45O 4.975 5.079 4.988 5.066 

TABLE 3. Values of the parameter b, in (5.4) for different jets 

Triangle 

Square 
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Appendix 

in pressure AP = P- Pa due to surface tension is given by 
In this appendix we show briefly how (2.5) is derived. A t  a free surface, the jump 

where R;l+ R;' is twice the mean curvature of the surface, P is the pressure within 
the jet.and Pa is the (constant) pressure of the surrounding atmosphere. In  particular, 
if the equation of our surface is of the form r = h(0, Z ) ,  where P ,  0 and Z form the usual 
cylindrical coordinate system, then we find 

+(1 +hi )  (hhse-2he-h2)}. (A 2) 

Using the notation of Geer (1977 a )  and introducing non-dimensional variables r = r / b  
and z = % / L ,  where L = U2/2g,  and letting h = bS(0, z ) ,  we find that (A 2) can be 
written as 

1 1 1S2+2S;-SSee 
- + O(e2b-'), 
R, + R, = b (Sz+S;)g 

where c: = b/L.  Also, if 0 = ULq5 is the velocity potential for the flow within the jet, 
we can use Bernoulli's theorem and (A 3) to write (A 1) as 
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where @ is the Weber number for our f low,  defined by 

(Equation (A 4) is a generalization of equation ( 1 1 )  in Geer (1977a), which includes 
surface-tension effects for a slender vertical jet.) 

Now, following the same procedure as Geer (1977a), we let q5 = q 5 O  + eq5l + e2q52 + . . . 
and see from his equations (7) and (9) that q 5 O  and q5l are functions of z alone, and, 
in particular, do not depend upon r or 6. Thus the lowest-order terms on the left-hand 
side of (A 4) which can vary with 6 are O(c4). Hence a meaningful condition on S can 
be obtained from (A 4) only if @-l = O(e4), i.e. 

@-I = €4 w-1, w-1 = O( l ) ,  (A 6) 

where W = e4@ = 2g2b3p/yU2. Using (A 6) and the expansions (2.1) and (2 .2) ,  the 
terms that are O(e4) in (A 4) yield (2 .5) .  
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